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Application of the kinetic theory of gases to granular flows has greatly increased our 
understanding of ‘rapid’ granular flows. One of the underlying assumptions is that 
particles interact only through binary collisions. For a given set of material and flow 
parameters, as the concentration increases, the transition from a binary collision 
mode to other modes of interaction occurs. Kinetic theory can no longer be applied. 
A numerical model is utilized to simulate the mechanical behaviour of a small 
assembly of uniform, inelastic, frictional, deformable disks in a simple shear flow. 
There are two objectives: to obtain the ‘empirical’ constitutive law and to gain 
insight into the mechanisms that operate in the transitional and quasi-static regimes. 
In  a simple shear flow, spatially and temporally averaged dimensionless stresses 
7; = 7t , / (psD2y2)  are functions of the concentration C ,  the dimensionless shear rate 
B = y/(K, /m)?,  and material parameters <,, K J K ,  and p. Here i, is the shear rate, K ,  
is the normal stiffness of an assumed viscoelastic contact force model, K J K ,  is the 
ratio of tangential to normal stiffness, <, is the normal damping coefficient, p is the 
friction coefficient, and ps, D and m are the particle density, diameter and mass, 
respectively. The range of B from 0.001 to 0.0707 was investigated for C ranging from 
0.5 to 0.9, with material constants fixed as [,, = 0.0709 (correspouding to the 
restitution coefficient e = 0.8 in binary impacts), K J K ,  = 0.8 and p = 0.5. It is 
found that for lower concentrations (C < 0.75) dimensionless stresses 7; are nearly 
independent of B,  while for higher concentrations (C > 0.75) 7; monotonically 
decreases as B increases. Moreover, their relationship in this regime is well 
approximated by power law : 7; r x  B-ni5cc). The powers n,, range from nearly zero for 
C = 0.775 (corresponding to the familiar square power dependency of dimensional 
stresses on the shear rate in the rapid flow regime), to nearly two for C = 0.9 
(corresponding to shear-rate independence in quasi-static regime). The intermediate 
concentration range corresponds to transition. Distinct mechanisms that govern 
transitional and quasi-static regimes are observed and discussed. 

1. Introduction 
Mechanical behaviour of dry, cohesionless granular material can be classified into 

grain-inertia (rapid flow), transitional, and quasi-static (slow flow) regimes (Savage 
1982). These regimes are characterized by different transport mechanisms. In the 
rapid flow regime, principal transport mechanisms are ‘kinetic ’ transport by particle 
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fluctuations and ‘ collisional ’ transport by particle interactions (often assumed to be 
instantaneous, binary collisions). In  the quasi-static regime, the principal transport 
mechanism is developed through a ‘network’ of contact forces, created by 
continuous and simultaneous contacts between particles. A complete granular flow 
theory should include all of the above mechanisms, each of which would become 
dominant in the appropriate regime. However, most of the research has been 
concentrated on limiting regimes. A complete theory which would include the 
transition between limiting regimes is not yet available. 

Granular materials are discrete systems that can be viewed as a continuum only 
upon suitable statistical averaging. Macroscopic behaviour of the system is then 
described by differential forms of mass, momentum and energy conservation laws. 
The central problem is the determination of constitutive laws for fluxes of momentum 
(stresses), mechanical energy (energy diffusion) and energy dissipation over the full 
range of concentrations and flow conditions. In  search of these constitutive equations 
current research eiforts include theoretical, experimental and numerical models. 

A number of theories have been developed for rapid granular‘flows. The most 
sophisticated are the kinetic theories (Jenkins & Savage 1983; Lun et al. 1984; 
Jenkins & Richman 1985a, 6 ,  1988) which are developed after Chapman-Enskog’s 
kinetic theory of dense gases. The velocity distribution function is solved by 
perturbation methods and transport properties are calculated ‘exactly ’. When 
applied to a simple shear flow, kinetic theories predict stresses to be proportional to 
the square of the velocity gradient, as predicted earlier by Bagnold’s (1954) simple 
micromechanical theory. Major assumptions employed are the assumption of 
‘molecular chaos ’ (particle positions and velocities are statistically uncorrelated) and 
the assumption of instantaneous, binary collisions of nearly elastic, smooth, rigid 
particles (uniform disks or spheres). Thus, these theories are limited to the range of 
applicability of the above assumptions. 

The quasi-static regime (slow deformation of the material) has been studied 
extensively in connection with the problems of soil mechanics, as reviewed by 
Spencer (1981). In this regime, the most commonly used approach is based on the 
continuum theory of soil plasticity. Inertia forces are generally neglected. This 
approach provides little insight into the micromechanics of the problem. 

Several attempts to combine all transport mechanisms have been made (Johnson 
& Jackson 1987; Savage 1988). These theories are based on the heuristic argument 
that stresses due to different mechanisms can simply be added together. Total 
stresses are then equated to the sum of kinetic and collisional stresses (as obtained 
by kinetic theory) and ‘plastic ’, or ‘frictional ’ contribution (typically assumed to be 
given by quasi-static Mohr-Coulomb theory). In principle, the plastic part is 
associated with contact forces, multiple contacts, sliding, rolling and other 
mechanisms not considered in kinetic theory. 

Discrete particle numerical simulations of granular material motion have become 
a valuable tool for investigation of particulate media behaviour. These models 
determine the behaviour of an idealized granular material by calculating the motion 
of individual particles as they interact with each other and the boundaries. 
Macroscopic properties are then determined by appropriate space and time 
averaging. This approach originates from ideas and methods of molecular dynamics, 
which began in 1957 and has undergone extensive development since. A review 
has been given by Allen & Tildesley (1988). The success of molecular dynamics 
calculations in predicting equilibrium equations of state and non-equilibrium 
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transport properties has been one of the major motivating factors for the adaptation 
of tlhese techniques to granular materials. 

There are two basic techniques used for the numerical simulation of the behaviour 
of systems of particles : rigid-particle and soft-particle models. I n  rigid-particle 
models collisions are assumed to be instantaneous. Post-collision trajectories are 
determined from the initial trajectories and an inelastic, frictional collisional 
operator governing the dynamics of an idealized binary collision. A list of collisions, 
in order of precedence, is maintained and simulation proceeds by variable time steps 
between successive collisions. The first rigid-particle model for granular flow was 
developed by Campbell (1982). Campbell & Brennen (1985 a ,  b )  reported results of 
Couette and chute flow simulations. Campbell & Gong (1986) performed a detailed 
study of the stress tensor in a simple shear flow. Hopkins & Shen (1988) have 
developed Monte Carlo simulation of simpie shear flow. Hopkins (1987) has 
developed a dynamical rigid-particle numerical simulation similar to  Campbell’s 
with the motivation of providing the spatial context for the Monte Carlo simulation 
as well as t’o provide a check for the two-dimensional air-table experiments of 
Sanders, Hopkins & Ackermann (1988). 

The soft-particle approach requires that collisions be of finite duration. The 
duration of contact is related to  finite particle stiffness which is specified as a particle 
property. The force a t  the contact is continuously varying as particles are being 
deformed. The deformation of the particle is represented as a small overlap. Various 
contact force models can be incorporated (elastic, viscoelastic, Hertzian, etc.). Forces 
a t  all contacts are determined at  one instant and Newton’s equations of motion are 
then numerically integrated to obtain new particle positions and velocities. The 
simulation proceeds by sm,all time steps which are usually kept a t  a fixed value. This 
approach can be applied to all configurations, including static and dynamic 
situations. Cundall and Strack developed the first, discrete-particle model based on 
the soft-particle approach (Strack & Cundall 1978; Cundall & Strack 1979a, b,  1983; 
Cundall, Drecher & Strack 1982). Although their calculation method treats the full 
dynamics of a system of particles, the model was used primarily to  investigate the 
behaviour of granular material undergoing slow, quasi-static deformations. Walton 
& Braun (1985, 1987) simulated the behaviour of small assemblies of nearly rigid, 
inelastic, frictional disks undergoing steady-state shearing. Periodic boundaries in all 
directions were used to simulate simple shear flow. I n  their study solid fractions were 
in the range between low and moderately high, resulting mostly in rapid flow 
conditions. 

The present model is patterned after the above-mentioned similar models of 
Cundall & Strack and Walton & Braun. Earlier versions of the model were 
successfully used to reproduce most of the existing results concerning special quasi- 
static or dynamic problems (complex two-dimensional configurations, rectangular 
wall-bounded systems under external loading, uniform rectilinear flows : Couette, 
gravity, etc.). These results as well as details of the code are described in Babi6 
(1988). 

I n  this work, results for the simple shear flow of uniform disks a t  high solid 
fractions are reported. From these numerical results an ‘empirical ’ relationship 
between stresses, shear rate and concentration can be derived. In  the subsequent 
text, this relationship will be referred to as the phenomenological constitutive 
equation. It is not a general constitutive equation but only one important particular 
case. If a plausible form for the general Constitutive equation were proposed, present 



84 M .  Babic', H .  H .  Shen and H .  T .  Shen 

X A  X B  X 

FIGURE 1.  Contact between two particles. 

results could be used to determine unknown coefficients in the general constitutive 
equation. In addition, these numerical results also provide an insight into the 
physical behaviour of granular materials in transitional and quasi-static regimes 
which is not well understood. 

2. Numerical model 
The simulation proceeds by repeating a set of calculations (calculation cycle) for 

each time step. The calculation cycle includes routines to search for all existing 
contacts, to calculate forces at all contacts from the force-displacement law, to 
integrate equations of motion for all particles and to obtain new positions and 
velocities, to handle periodic boundary conditions and to update statistical 
summations. 

2.1. Contact between particles 
The contact of two disks, A and B, is shown in figure 1. The position vectors of the 
centres of disks A and B are represented as xA and x,. The velocity vectors of centres 
of disks A and B are represented as x A ,  x,, and the angular velocities are denoted as 
8A and bB, taken positive in the counterclockwise direction. The unit vector k is 
defined to be pointing from the centre of disk A to the centre of disk B and the unit 
vector t is obtained by a counterclockwise rotation of k through go", i.e. 

= (cosa,sina);  t = (-sina,cosa), X B  - - X A  k =  
I x B - x A l  

where a is the angle between the contact normal k and the x-axis. 
Points PA and PB are defined as the points of intersection of the line connecting the 

disk centres with the boundaries of disks A and B,  respectively. The relative 
displacement at the contact point C is determined by the integration of the relative 
velocity. The relative velocity a t  the contact is defined as the relative velocity of 
point PA with respect to P,, which can be expressed as 

(2 1 v,, = ( X A  -kB) + R ( B A  + 8,) t ,  
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FIQURE 2. Contact force model. 

where R is the particle radius. The relative displacement rates in normal and 
tangential directions n and q are the projections of VAB onto k and t ,  respectively, 

n =  V A B * k ;  q =  V A B * t .  (3) 

The contact force model (force-displacement law) implemented in the present 
model is the same as the one used in Cundall & Strack (1979a, b) .  The schematic 
representation of this contact force model is shown in figure 2. 

The force in the normal direction is modelled as viscoelastic (damped harmonic 
oscillator). It consists of an elastic (spring) contribution and viscous damping 
(dashpot) contribution. The force in the tangential direction is modelled as 
viscoelastic below the friction limit (non-sliding contact), and frictional at  the 
friction limit (sliding contact). The friction limit is assumed to be given by the 
Mohr4oulomb law. The normal particle stiffness k, is in principle related to a 
particle's modulus of elasticity E .  Effective contact stiffnesses in the normal and 
tangentional directions K ,  and K, are obtained from particle stiffnesses k, and k,. 
Using the analogy with springs connected in series, effective contact stiffnesses for 
identical particles are K ,  = ik, and K, = $k8. The normal and shear spring forces at  
time step N are obtained as 

FZ = FE-' + K ,  nN-iAt, 

FY = FY-l+ K ,  Q"-- :At. 

(4) 

(5 )  

The contact damping operates on the relative velocities at the contacts. Damping 
forces D, and D, are proportional to components of relative velocities n and q. 
Damping forces are evaluated as 

D ,  = 2[,(mK,)$?i; D, = 2&(mK,)~Q, (6) 

where 5, and 5, are (dimensionless) coefficients of viscous contact damping in the 
normal and tangential directions, respectively, and m is the particle mass. 
Dimensional coefficients of damping are denoted as C, = 2[,(mK,)' and 
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C, = 2Q(mKn)i. On the basis of a, theoretical solution for binary contact (collision), an 
explicit relationship between the normal damping coefficient 5, and coefficient of 
restitution e can be found to be (Babid 1988): 

For non-binary interactions the concept of a restitution coefficient is not meaningful. 
The duration of binary contact was also obtained by Babid (1988) as 

(8) 
rc 

t ,  = 
[ ( x n / m )  (~-c)I’* 

Thus, the duration of collision is independent of impact velocity. 
A Coulomb-type friction law is incorporated as follows. If the magnitude of the 

shear force, found from ( 5 ) ,  is larger than (F,),,, = pFn, then the shear force is set 
equal to (F,),,,, with the direction always opposite to the relative tangential velocity 
a t  the contact q. Here p denotes the interparticle friction coefficient. In  that case, the 
viscous damping in the shear direction is not applied, i.e. D,  = 0. 

Once all resultant forces and moments acting on each particle are obtained, new 
velocities and positions of all particles are obtained by numerical integration of 
Newton’s second law. The time-centred finite-difference scheme (leap-frog algorithm) 
is used to allow explicit numerical integration of the equations of motion. 

2.2. Simple shear jlow set-up 
Shear flow of a small assembly of particles is simulated using the periodic boundary 
conditions, which is a standard technique of non-equilibrium molecular dynamics 
(Allen & Tildesley 1988). An assembly of N particles is placed in a shear cell centred 
a t  the origin of a fixed coordinate system (x,,x2). This cell is referred to as the 
primary calculation cell. The width and height of the primary cell are denoted as a 
and b ,  respectively. The primary cell is surrounded by an infinite array of ‘image 
cells’. Each image cell is an exact copy of the primary cell (each particle in the 
primary cell has its ’clone’ in each image cell). The primary cell and the adjacent 
image cells are connected by periodic boundaries. Periodic boundary conditions 
operate in such a way that if a particle moves out of the primary cell, its clone 
automatically enters from the opposite image cell. Thus, the number of particles in 
the cell is always conserved. 

Shear flow of the particle assembly in the primary cell is achieved by the motion 
of the adjacent layers of image cells in the opposite directions (figure 3). The relative 
velocity of two adjacent layers of cells is denoted as V .  The apparent shear rate is 
defined as y = V/b. Depending on the flow conditions (mostly on density), the 
apparent shear rate y may or may not be the same as the local velocity gradient. At 
low densities, shearing of the particle assembly typically results in uniform shear 
conditions, the mean velocity profile is continuous, and y is equal to the local velocity 
gradient dUJdx, (figure 3 b ) .  At high densities, a discontinuity in the mean velocity 
profile typically occurs and the local velocity gradient is not well defined. In  the 
following presentation of results, y is always to be interpreted as defined, i.e. as an 
apparent shear rate. 

The simulation set-up described above roughly corresponds to physical exper- 
iments in shear cells with rough boundaries. Two notable differences are: (i) the 
dilation of an assembly is prevented (the cell area and the number of particles are 
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FIGURE 3. Simple shear flow set-up: (a) initial configuration ( t  = 0); ( b )  simple shear flow 
(uniform shearing, t > 0). 

strictly constant); and (ii) there can be no net flux of energy across periodic 
boundaries, while in physical experiments energy can flow towards the solid wall or 
away from it. 

2.3. Statistical averaging 
Space averaging is used to determine instantaneous values of various quantities 
averaged over all particles in the primary computational cell. In  Appendix A, the 
instantaneous mechanical energy equation is derived. The result is 

where the Cartesian components of D, are D,, = y, D,, = D,, = D,, = 0. In  the case 
of uniform shearing (low densities), Dij may be identified with the local velocity 
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gradient tensor. T = + T,  is the kinetic energy per unit volume with respect to 
mean flow, V is the potential energy per unit volume, rtj. = T ~ + T ; ,  is the complete 
stress tensor and r is the rate of energy dissipation per unit volume. These terms are 
defined as follows 
translational fluctuation kinetic energy per unit volume 

rotational kinetic energy per unit volume 

potential energy per unit volume 

rate of dissipation per unit volume 

kinetic stress tensor 

contact stress tensor 

where A is the flow field (cell) area, N is the number of particles in A, M = M, +M2 
is the total number of contacts inside A ,  Ml is the number of non-sliding contacts and 
M2  is the number of sliding contacts. The fluctuation velocity of particle p with 
respect to the mean shear flow, which appears in translational energy and kinetic 
stress terms, is defined by u;P = ur-Dijxr. The above expressions are used for 
numerical evaluation of instantaneous spatially averaged system properties during 
the simulation. One important result of the derivation given in Appendix A is to 
show that the expression for the contact stress tensor (15) is valid even if the 
assumption of negligible inertia (as in, for instance, Cundall et al. 1982) is not 
employed. 

Time averaging was performed in the following way. The cumulative time 
averages of interesting quantities were monitored during the run, and the system was 
assumed to be in steady state when cumulative averages approached constant values 
within a certain accuracy. The cumulative time average of the quantity Q, over nt 
time steps is defined as 

I nt 
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Further check to determine whether the system has arrived at a steady state from 
a dynamical point of view comes from performing a time averaging of the energy 
equation (9), which yields 

T Z 1 y  = r, (17) 

i.e. in steady state the average shear stress power is balanced by the average rate of 
energy dissipation. Typically, this condition was satisfied within 5 % in actual 
simulations. 

3. Analysis of results 
3.1. Dimensional analysis 

Basically, the problem amounts to finding the relationship between stresses rii and 
the following variables: shear rate y ,  number density n = N / A  (or the nominal 
concentration C = &D2n), particle diameter D ,  particle mass m (or solid density ps),  
normal and tangential contact stiffnesses K ,  and K,, normal and tangential damping 
coefficients 6, and and coefficient of friction p. Namely, 

Applying dimensional analysis to the above yields 

7; = f ;(B> C, Y n ,  Q ,  K,/K,, p ;W> (19) 

where 7; = T U / ( p s D 2 j 2 )  and B = j /(K,/m)i.  The effect of sample size is indicated by 
the possible dependence of stresses on the number of particles N .  

The role of parameter B should be discussed at  this point. The dimensional analysis 
clearly indicates that dimensionless stresses 7: are functions of B only, when the 
number density n (or C) and material parameters c,, I&., K J K ,  and p are held 
constant. For a constant m, say m = 1, B can be varied in two ways: holding K ,  
constant and varying y ,  or holding y constant and varying K,. The first way 
corresponds to the same material being sheared at  a slower or faster rate. The second 
way corresponds to softer or harder particles being sheared at a constant rate. The 
theoretical limit of particle hardness is K ,  + co (B + 0) ,  corresponding to perfectly 
hard (rigid) particles. In this case, particles interact vis binary collisions only, and 
stresses are invariably proportional to the square of the shear rate. This regime of 
behaviour is termed ‘rapid flow ’. As K ,  decreases, particles become softer and softer, 
and the percentage of multiple contacts increases. The reason for this is that the 
collision duration t,, given by (8), increases as K ,  decreases. Therefore, the 
probability that another particle will ‘join ’ a colliding couple is proportionally 
higher. In this case, the flow is no longer rapid. 

A t  sufficiently high solid volume fractions, soft particles interact through 
continuous, simultaneous contacts, creating a network of contact forces. Stresses are 
eventually going to become shear-rate independent, and this regime of behaviour is 
termed ‘ quasi-static ’ or, often, ‘slow flow ’. In other words, for fixed C, the behaviour 
changes from the rapid towards the quasi-static regime as B increases. However, as 
mentioned earlier, B can also be increased by increasing the shear rate y ,  at constant 
K .  In this case, the behaviour changes from the rapid towards the quasi-static regime 
as the shear rate increases. This contradicts the usual notion that rapid flow is fast 
flow and quasi-static flow is slow flow. It is really the other way around, the flow is 
becoming more and more ‘rapid’ (binary collisions dominant) for slower and slower 
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shear rates; and more and more quasi-static (multiple contacts dominant) for faster 
and faster shear rates a t  constant concentration. This conjecture will be verified by 
simulation results. 

The simple shear flow simulation used in this study corresponds to a ‘constant- 
volume ’ type of experiment. The number of particles in the cell and the cell area are 
fixed, The concentration (apart from the minute fluctuations associated with particle 
deformations) is constant. The conclusion stated above that the flow characteristics 
tend to change from rapid to quasi-static with increasing shear rate is valid as long 
as concentration is constant. I n  the experimentally more common situation, where 
the normal force is held constant, the particle assembly responds with dilation to the 
increase in the shear rate. The dilation is responsible for the increase of volume and 
thus the decrease in concentration. At lower concentrations, naturally, flow tends to 
be more rapid. Therefore, in a ‘constant-pressure’ type of experiment, the system 
will move from the slow towards rapid flow type of behaviour, owing to decrease in 
concentration caused by dilation. This trend can be indirectly detected from 
simulation results. It should be noted, however, that  constant-pressure numerical 
experiments would be impossible to perform in a consistent manner over a full range 
of concentrations. 

3.2. Experimental procedure 
A complete set of numerical experiments with N = 30 particles, has been performed 
for all combinations of C = 0.5, 0.6, 0.7, 0.75, 0.775, 0.8, 0.825, 0.85, 0.875, 0.9 and 
R = 0.001, 0.01, 0.0707. 

In all runs B was varied by changing K ,  and holding mass m = 1,  and the shear 
rate y = 1.  A few test runs were performed with the same B using different 
combinations of K, ,  m and y in order to verify conclusions concerning dimensional 
analysis and the results were identical. 

The time step used was obtained as a fraction (&) of the duration of the normal 
binary contact time t ,  given by (8). The normal damping coefficient is selected as 
5, = 0.0709, such that the corresponding restitution coefficient for binary impacts 
becomes e = 0.8, according to ( 7 ) .  The friction coefficient is ,u = 0.5. The ratio of 
shear to normal stiffness K J K ,  = 0.8, and the shear damping coefficient is set to 
zero. The dimensionless time step dt* = j d t  = j t , /50 = 0.0445B. 

The particles’ radii are set to unity and the cell dimensions are selected such that 
a specified nominal concentration is obtained for the given number of particles. 
Initially, particles are placed in regular hexagonal packing. Initial velocities of 
particles consist of randomly oriented fluctuation velocity of magnitude 21’ and a 
mean component in the x-direction which is proportional to  the shear rate and the 
particles’ initial y-coordinate. The approach to uniform shear conditions is enhanced 
by this initial mean velocity profile. The total initial momentum in the system is set 
to zero by subtracting from each particle velocity the sum of all initial fluctuation 
velocity vectors divided by the number of particles. The magnitude of the initial 
fluctuation velocity v’ is an input variable, which is selected to achieve an estimated 
average fluctuation particle velocity during the run. With a good choice of v’, the 
approach to steady state takes a shorter time. 

Simulations were run until cumulative-time-averaged mean stresses approached 
an approximately constant value. Typically, for B = 0.001 this would require 
between 500000 and 2000000 time steps, for B = 0.01 between 200000 and 500000 
time steps and for B = 0.0707 between 50000 and 100000 time steps. Obviously, the 
most expensive runs were for B = 0.001, where 2000000 steps or more than 10 hours 
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FIQURE 4. Dimensionless shear stress vs. C. 

of CPU time on a Gould 9080 was required. Simulations with values of B lower than 
0.001 were not feasible on this computer. 

Results of the simulation consist of cumulative mean values for all components of 
kinetic and contact stresses, kinetic energy per unit volume (translational and 
rotational), potential energy per unit volume (due to normal springs and shear 
springs), dissipation rate per unit volume (due to normal damping, shear damping 
and friction), mean angular velocity, fluctuation velocity distribution, frequency of 
broken contacts (collisions), coordination number (mean number of contacts per 
particle), contact number percentages, contact angle distribution, fabric tensor 
components, fraction of slipping contacts, etc. The most important of these results 
are tabulated in tables 1-3 in Appendix B. In  addition to these mean values, a time 
history of instantaneous cell-averaged values is available for most of these quantities. 

3.3. Phenomenological constitutive equations 
The objective of this study is, once again, to obtain a relationship between stresses, 
apparent shear rate, concentration and material properties. This relationship is 
referred to as the phenomenological constitutive equation. Since material properties 
are held constant, in this study only the dependence of dimensionless stresses on B 
and C was investigated. Furthermore, all results are obtained with the number of 
particles N = 30. The effect of sample size (i.e. N) on the results will be a part of future 
work. 

Time-averaged dimensionless stresses 7: are plotted versus concentration C in 
figures 4, 6, and 8, and versus parameter B (dimensionless shear rate) in figures 5, 7 
and 9. For comparison, data of Walton & Braun (1985) are also shown. They have 
applied a similar computer model to the same problem of simple shear flow of 
uniform disks, using the same number of particles, N = 30. They have investigated 
a low to moderately high concentration range (0.025-0.825), resulting mostly in 
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FIGURE 5. Dimensionless shear stress vs. B. 
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rapid flow conditions. At C = 0.8 they have observed the onset of transition, but 
have not pursued their investigation any further. Results of the present model 
compare very well with the data of Walton & Braun (1985) for lower concentrations, 
but begin to deviate for higher concentrations. It should be noted that they 
performed two runs with different initial conditions for each case they investigated. 
The difference in results increases with concentration. In  our figures, for clarity, only 
mean values of their results are shown. Actually, the comparison with the lower 
limits of their calculated results is quite good even for high concentrations. 

The major difference between the model of Walton & Braun (1985) and present 
model is the force-displacement law (contact force model). In  their model, the normal 
force is described by a partially latching spring model. The force-displacement law 
has different slopes for loading and unloading portions of an impact. Thus, the 
normal force exhibits a position-dependent hysteresis which results in a coefficient of 
restitution of less than unity for normal impacts. The tangential friction force model 
is based on theoretical models for friction forces acting between elastic spheres in 
contact developed by Mindlin & Deresiewitz (1953). I n  the regime where binary 
contacts are dominant, the effect of different contact-force models is small. I n  fact, 
it  can be shown analytically that for normal binary contacts, the results of the two 
models should be exactly the same. However, differences in treatment of inelasticity 
and tangential force component have led to larger discrepancies in the regime where 
multiple, continuous contacts are dominant. 

I n  figures 5,7,  and 9, dimensionless stresses 7; are plotted versus B on log-log scales 
for different values of C. It can be seen from these figures that for lower 
concentrations (C < 0.75) dimensionless stresses are nearly independent of B in the 
range from B = 0.001 to B = 0.01, but decrease for B = 0.0707. Theoretically, on 
these curves, there should be an asymptote (hard-disk point) as B+O. For C = 0.5 
and 0.6 i t  appears that  this asymptote has already been reached, since stresses for 
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B = 0.001 and B = 0.01 are nearly the same. For C = 0.7 and 0.75, surprisingly, 
stresses for B = 0.01 are slightly higher than stresses for B = 0.001. This may be due 
to statistical uncertainties. It is also not certain whether the hard-disk asymptote 
has been reached in these cases. For higher concentrations ( C >  0.775), T: 

monotonically decreases as B increases. For C = 0.775, 0.8 and 0.825 it seems that 
4-2 
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the hard-disk asymptote would probably be reached with one more order of 
magnitude decrease in B (B x 0.0001). For C = 0.85, all stress components increase 
sharply, and the system undergoes a phase-change type of transition. For high C 
(G = 0.85,0.875 and 0.9), the hard-disk flow may not be possible at  all, and the stresses 
may be increasing as B decreases all the way to zero. The steepness of the (7*,B)- 
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curves, which increase with C, clearly indicates this trend. Setting the curvature 
aside for the time being, one can quite well approximate (T*,B)-curves by straight 
lines in the range of B that was investigated (0.001-0.0707) for C > 0.775. This 
suggests the functional form 

7: = a,,( C) B P I ~ ( ~ ) ,  (20) 

where ai, and nij can be obtained for each C by regression analysis. Recasting (20) in 
dimensional form, it then follows that 

(21 )  

The importance of this approach now becomes apparent. The stresses are 
proportional to the shear rate to  the power (2-nt j ) .  As C increases, so does nil, and 
the resulting stress-shear-rate dependence changes from a power of two (rapid flow) 
for low concentration to a lower and lower power, eventually reaching nij = 2 for 
very high C, corresponding to a quasi-static, rate-independent limit. Note that ni, 
and especially a,, could depend on the sample size (or the number of particles N). 

In  order to quantify these considerations, a regression analysis was performed on 
the set of three (log T * ,  log B )  data points to obtain au and nu for each C .  This analysis 
is given in table 4 in Appendix B. Results are plotted in figures 10 and 1 1 .  Figure 10 
shows the variation of n,, with C, and figure 1 1  shows the variation of a,, with C. It 
can be seen that all nu(C) curves are S-shaped, asymptotically approaching the 
rapid-flow limit nij = 0 for low concentrations and quasi-static limit ntj = 2 for high 
concentrations. I n  fact, for C = 0.775, n,, = 0.214, n,, = 0.072, nZ2 = 0.290, what is 
a relatively small departure from a second-power shear-rate dependence (rapid flow). 
On the other hand, for C = 0.9, nZ1 = 1.198, n,, = 1.684, nZ2 = 1.845, representing 
what is relatively close to the theoretical quasi-static rate independent limit. 

Phenomenological forms of constitutive equations for transition are thus given by 

7ij = a,(C)p,D 2 ? 2-ntl(c)(K/m)n{j(c)lz. 
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(21) with functions n,(C) and ai5(C) tabulated in table 4. If so desired, these functions 
could be fitted with some polynomial expression. These equations are applicable to 
the range of C approximately from 0.775 to 0.900. For lower C ,  an appropriate rapid- 
flow equation may be used, and for higher C an appropriate quasi-static equation 
may be used, provided that they match the above relationship at end points. 

The range of applicability of these equations with respect to B is not quite certain. 
Strictly speaking, they are applicable only to the range B = 0.001-0.0707 that was 
investigated. Therefore, if the range, say, B = 10-5-10-3 were investigated next, the 
coefficients au and nij would probably be different. However, simulations with such 
values of B are at present not feasible and it is hoped that extrapolation of present 
results to lower B range would still give a reasonable estimate. 

The effect of sample size (arm may be important, especially at high concentrations. 
As will be shown in the following section, at  high concentrations all of the shearing 
takes place in a thin region (rolling layer) about which ‘solid’ blocks of granular 
material move in opposite directions with relative velocity V .  In this case, the 
apparent shear rate y = V / b  cannot be associated with the local velocity gradient 
(which is equal to zero within the blocks and proportional to V / D  at the rolling 
layer). The apparent shear rate is directly affected by changing Nand thus the height 
of the shear cell b.  If a significant dependence of results on the sample size were found, 
perhaps a different non-dimensionalization in the non-uniform shearing case (with B 
redefined using y = V / D )  would be more appropriate. However, the investigation of 
the N-effect is postponed for a future study. 

The power-law dependence, (20), of 715 on B (and thus on V ) ,  with powers nij 
decreasing from 2 to 0 as concentration increases, is an important result which 
describes the response of stresses to the rate of shearing in the transitional regime. 
This type of relationship is expected to be valid for different sample sizes as well. 
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3.4. Discussion of transition 
One of the major characteristics of rapid flow is that the dominant mode of particle 
interaction is binary collisions. In order to establish whether a certain flow is indeed 
in the rapid regime, consider the relationship of the coordination number c and 
collisional frequency f ,  both of which are measured during the simulation. The 
collisional frequency f is defined as the average number of collisions per particle per 
unit time. The coordination number c is defined as the average number of contacts 
per particle. If all contacts were binary, then c could also be interpreted as the 
probability that a particle is undergoing a binary contact (collision) at a given 
instant. This probability is equal to the ratio of time spent in contacts per unit time, 
which is equal toft,, where t, is the duration of a binary contact. The duration of 
binary contact is given by (8), determined analytically. Hence, in the binary collision 
regime c/ftc = 1. The degree by which this relationship is violated in an actual 
simulation indicates a departure from the binary collision regime. 

The elements of this diagnostic ( c ,  f and the ratio c / f t c )  are tabulated among other 
quantities in tables 1-3. It can be seen that for B = 0.001, c / f t ,  z 1 for low 
concentrations (0.5, 0.6,0.7), then slowly increases but is still within 10 % deviation 
for C = 0.75. For B = 0.01, c / f t ,  z 1 for C = 0.5 and 0.6; then has deviated by more 
than 10 % from 1 by C = 0.7 and by about 50 YO for C = 0.75-0.825. For B = 0.0707, 
deviation is already large a t  C = 0.5. The marginal concentration for which flow can 
be called rapid is denoted as C,. It can be (arbitrarily) defined as the concentration 
for which the deviation of c/ftc from 1 is, say, exactly 10%. Apparently, C, increases 
as B decreases : for B = 0.001, C, z 0.75; for B = 0.01, C, z 0.65, and for B = 0.0707, 
C, c 0.5. 

The coordination number c is plotted versus C in figure 12. From this figure it can 
be clearly seen that system undergoes a phase-change transition (sharp jump in the 
coordination number) between C = 0.825 and 0.85 for both B = 0.001 and B = 0.01. 



98 M .  Babic', H .  H .  Shen and H .  T .  Shen 

Actually, if this interval was further discretized and more runs performed for 
intermediate concentrations, the exact location of the phase-change transition would 
be determined. One can speculate that the phase change for B = 0.001 occurs for 
slightly lower C than for B = 0.01. This is due to the effect of particle deformations 
(overlaps), which effectively reduce mean solid volume fraction and allow more void 
space for shearing. This reduction is more significant for higher B (softer particles). 
The location of phase change is denoted as C,,. From the location of phase change 
towards higher concentrations the material is in fact solidified. Large crystallized 
regions can be observed. Such a structure is characteristic for the uniform size 
distribution considered here. However, for a non-uniform size distribution, the 
structure of the particle assembly could be qualitatively different and the location of 
phase change would depend on details of size distribution. In general, the phase 
transition would in this case occur at  higher concentrations. 

From the location of phase change towards higher concentrations the coordination 
number increases sharply, approximately linearly, for both B = 0.001 and 0.01. For 
C = 0.9, the average coordination number is about 3.5. Obviously, if the 
concentration is further increased, beyond close hexagonal packing (C = 0.907), the 
coordination number would reach its maximum value of 6, and flow would become 
fully quasi-static. The concentration for which flow becomes fully quasi-static 
(powers nu -+ 2) is denoted as Cqs. 

Based on previous discussion, the transitional flow can be classified into two types : 
type A, prior to phase change and type B, after phase change. The complete flow 
classification is presented below : 

(i) C < C, - rapid flow (percentage of multiple contacts insignificant) ; 
(ii) C,. < C < C,, - transitional flow, type A (prior to phase change : percentage of 

(iii) Cpe < C < C,, - transitional flow, type B (after phase change : force chains 

(iv) C > C,, - quasi-static flow (force chains persistent). 
The flow classification is illustrated in figure 13. This figure is basically a schematic 

regime chart. It is mostly qualitative, and a much more detailed study would be 
needed to quantitatively determine curves C,(B), C,,(B) and Cq,(B) which separate 
different regimes. It seems logical that for very small B the value of C, would 
approach C,,, and there would be no type A transitional flow. This limiting 
concentration, C, = Cpc E C,, (for B+O) is the theoretical limit of applicability of 
kinetic theory. Phase-change concentration C,, is probably not very strongly B- 
dependent, except for rather high B. The quasi-static concentration C,, is probably 
very close to the dense hexagonal packing concentration C = 0.907. However, it is 
expected to increase as B increases, since for higher B actual particle deformations 
(overlaps) occupy more space and effectively reduce solid volume fraction. 

In figure 14, the contact-number distributions are shown for several cases. Contact 
number n, = 0 represents free travelling, n, = 1 represents binary contacts, and 
n, > 1 represent multiple contacts. For C = 0.8 andB = 0.001, the fraction of multiple 
contacts is very small, while for B=0.01 it  is more significant. By the above 
classification, the former flow is just barely type A transitional, while the latter is 
deeply in the type A regime. For C = 0.85, for both B = 0.001 and B = 0.01, flows are 
type B transitional, just after the phase change. For C = 0.9, for both B = 0.001 and 
B = 0.01, flows are type B transitional, but close to the quasi-static regime. 

In figure 15, the contact-angle distributions are shown for several cases. Strong 
collisional anisotropy can be observed for C = 0.8. In this case the majority of 

multiple contacts significant) ; 

created and destroyed) ; 
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FIQURE 16. Dimensionless shear stress IJS. time (C = 0.8, B = 0.001). 

contacts are about an angle of 115". After phase change (C = 0.85), force chains are 
formed in two principal directions corresponding to the hexagonal packing : 60' and 
120". For C = 0.9, the majority of contacts are still in directions corresponding to the 
hexagonal packing, but there is also a significant percentage of angles close to 0", 
corresponding to a square-packed region about the rolling layer, as will be shown 
later. 
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FIQURE 17. Configuration plot (C = 0.8, B = 0.001) at  nt = 50200 steps. 

To illustrate features of nearly rapid flow (actually type A transitional flow), shear 
stress development over time is shown for C = 0.8, B = 0.001 in figure 16. Other 
stress components show similar variations. This graph shows vigorous fluctuations 
corresponding to the effect of individual collisions. An instantaneous configuration 
plot is shown in figure 17. The thickness of rectangles correspond to the magnitude 
of the forces a t  contacts. It can be seen that only a few simultaneous contacts (which 
are actually collisions) exist instantaneously in an assembly. Maximum instan- 
taneous stresses (which extend beyond the frame of figure 16) are up to 200 times 
higher than the mean value of 7.78. However, these maximum stresses do not 
correspond to particularly ‘strong ’ collisions, but rather to the formation of 
temporary, short-lived, force chains extending vertically across the flow cell. These 
chains, however temporary, have increased the mean value of stresses significantly. 
Kinetic theory would here underestimate stresses, being unable to predict or describe 
the formation of these chains. As the concentration increases, these temporary force 
chains become more frequent and more persistent. Eventually, phase change occurs, 
after which force chains are present most of the time. However, these chains are 
being periodically created and destroyed, corresponding to deformations of an 
assembly. 

Some of the most fascinating features of shear flows a t  high concentrations have 
been observed for C = 0.9, B = 0.001, This run is therefore presented in detail. This 
case falls into the category of nearly quasi-static flow (actually type B transitional 
flow). The development of stresses in time is shown in figures 18 and 19. These figures 
reveal remarkable regularity and periodicity. The initial configuration is a regular 
hexagonal packing. Initially, all of the energy is contained in the translational mode, 
and there are no contacts between particles. Hence, all contact stress components are 
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FIGURE 19. Dimensionless normal stresses vs. time (C = 0.9, B = 0.001). 

initially zero. The transverse normal stress component 722 increases sharply, reaches 
a maximum amplitude, and then decreases back to  zero within a time period T .  The 
streamwise normal stress component 711 similarly first increases, then reaches a 
constant-magnitude plateau, and eventually falls off to zero as well. The magnitude 
of the maximum 711 is much smaller than the maximum 722. The shear stress reaches 
a maximum positive value a t  approximately aT, passes through zero a t  BT (when 
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FIGURE 20. Rolling cycle: stresses us. time. 

normal stresses are a t  maximum), changes direction, reaches a maximum negative 
value a t  aT and goes back to zero after a full period T .  The shear stress curve looks 
very much sinusoidal with period T .  At the instant when all contact stress 
components are nearly zero, the system configuration returns to a hexagonal 
packing. The whole cycle then repeats itself again and again. 

The detailed stress vs. time curves are plotted for one cycle in figure 20. 
Instantaneous configurations a t  the beginning of the cycle, aT, ST and #T are shown 
in figure 21. In these configuration plots interparticle forces are represented as 
rectangles centred a t  the contact point, and inclined in the direction of the actual 
contact force. The thickness of a rectangle is proportional to the magnitude of the 
contact force. Dashed lines represent contact forces with a magnitude less than & of 
the maximum force during the sequence. These figures reveal what is actually going 
on during one period T .  It can be seen that the mechanism responsible for the shear 
flow is a rolling layer (particles 1, 2, 3, 4, 5 )  formed between two hexagonally packed 
granular masses moving in opposite directions relative to each other. The period T 
corresponds to the time period required for one particle (i.e. no. 7) to roll over a 
particle in the rolling layer (i.e. no. 3). Thus, the period T will be termed 'rolling 
cycle '. The formation of principal force chains can be observed. In  the first quarter 
of a cycle, the principal force chains are formed, which are inclined at an angle of 120' 
from the horizontal (x-axis). In  the second quarter of a rolling cycle, particles rolling 
about the rolling layer create rhomboidal packing, in which magnitudes of forces are 
higher than in hexagonally packed regions. In the same time, the second principal 
direction is activated (contact angle 60' with the x-axis), but forces in this second 
chain are smaller than in the first. In  these contacts the tangential force component 
is at the friction limit, which can be seen from the inclination angle of the force with 
respect to the contact normal. Therefore, the sliding takes place along a plane 
inclined 120' from the x-axis. During this time, the shear stress reaches a maximum 
(positive) level. Frictional dissipation of energy is a t  its maximum as well. 
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FIGURE 21 (a, b ) .  For caption see facing page. 
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FIGURE 22. Periodogram and spectral density estimate for shear stress time series 
(C = 0.9, B = 0.001). 

Eventually, the rolling layer and neighbouring rows of particles form a perfectly 
square packing, which requires more space, and thus compresses the hexagonal 
portion. The configuration is perfectly symmetric. Forces in two principal chains are 
equal in magnitude. This instant corresponds to half of the cycle (iT) when normal 
stresses are at a maximum, which can be seen from thickness of force rectangles a t  
this instant. At this instant, shear stress passes through zero. As rolling continues, 
forces in chains decay in magnitude, since square packing deforms into rhomboidal 
which requires less space. Force chains at 60" angle are now stronger, and sliding 
takes place a t  contacts at 120'. Shear stress reverses direction. Eventually, in the last 
quarter of the rolling cycle, the whole assembly relaxes towards uniform hexagonal 
packing and all stress components decrease to zero. At the end of the cycle, potential 
energy is nearly zero, but kinetic energy reaches a maximum, and this is responsible 
for the start of the next cycle. This is a complete description of one rolling cycle. 

The period of the rolling cycle T can be measured from simulation results. Spectral 
analysis of the time series 721 was performed using IMSL software routines PFFT and 
SSWB. Results are shown in figure 22. In this figure, the fluctuating line is a 
periodogram of the time series, obtained by routine PFFT. The smooth curve is a 
spectral energy density estimate obtained by routine SSWD which uses Parzen's 
window with parameter M = 300. The dominant frequency is equal to 16.3?, from 
which it  turns out that T = 0.383/j, or about 8600 time steps. The period T can also 
be estimated using simple arguments. Let w be the horizontal velocity of hexagonal 
' blocks ' moving in opposite directions about a rolling layer. Periodic boundary 
conditions impose at least one rolling layer in each layer of cells. It was observed that 
there was only one rolling layer in a cell, such that distance between two rolling 
layers (original and cloned) is equal to b, the height of the calculation cell. In order 
to maintain a specified shear rate y and assuming that blocks move with constant 
relative velocity 2w, it follows that w = ~ b .  Since each particle in the block has to 
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travel a horizontal distance D during one cycle, the period of rolling is T x D/v  = 
2D/yb .  For C = 0.9, one obtains T x 0.384, which is almost identical to the measured 
value. 

In the detailed presentation of this run it was demonstrated that the mechanism 
of shear flow at high concentrations is the rolling of particles about the rolling layer. 
The rolling cycle is repeated periodically, and its period can be accurately estimated 
using simple arguments. During the rolling cycle stress components behave very 
regularly, and it is believed that the problem should be tractable analytically. 
Therefore, an interesting and challenging problem is posed here : to theoretically 
describe stress variations during the rolling cycle utilizing presented microscopic 
informations. The time-averaged (mean) stresses would then be easily obtained. The 
analytical solution of this problem would be of great importance for the description 
of the granular material behaviour near the quasi-static limit. 

4. Conclusions 
In this study, a numerical model is utilized to directly simulate the mechanical 

behaviour of a small assembly of uniform, inelastic, frictional, deformable disks in a 
simple shear flow. The study is focused on high solids concentrations, up to C = 0.9, 
in order to capture and explain the transition between rapid and quasi-static 
granular flows. In a simple shear flow, with an assumed viscoelastic, frictional 
contact force model, the dimensionless stresses $ = T, / (p ,D2 j2 )  are a function of 
concentration C, the parameter B = P/(Kn/m)x (dimensionless shear rate), and 
material constants). The range of B from 0.001 to 0.0707 was investigated for C 
ranging from 0.5 to 0.9. Larger values of B correspond to faster flow at a constant 
contact stiffness, or, equivalently, softer particles at  a constant shear rate. It is found 
that is nearly independent of B for C < 0.75, but as the concentration increases, 
T; decreases as B increases. Phenomenological forms of constitutive equations are 
derived as T$ = au(C) B-nfj(C), based on the simulation results. The values of ni3, 
estimated by regression analysis, are found to range from nearly zero for C = 0.775 
(corresponding to square power dependency of dimensional stresses on shear rate in 
the rapid regime) to nearly two for C = 0.9 (corresponding to shear-rate independence 
in the quasi-static regime). The intermediate range of concentration corresponds to 
the transition between these regimes. 

The phase-change type of transition was clearly observed between C = 0.825 and 
0.85 for both B = 0.001 and B = 0.01. For B = 0.0707, the phase change transition 
did not occur. In general, the phase-change concentration Cpc is a function of B ,  and 
is expected to slightly decrease as B decreases. Transitional flows are classified into 
two types: type A, prior to phase change; and type B, after phase change. 
Mechanisms governing transitional flows are observed and discussed. Type A 
transitional flow is similar to rapid flow, i.e. mostly collisional. However, short-lived 
force chains occasionally appear and increase the value of time-averaged stresses. As 
concentration increases, these temporary force chains become more frequent and 
more persistent. After the phase change, in the type B transitional regime, force 
chains are periodically created and destroyed corresponding to deformations of the 
assembly. The shear flow is maintained by rolling mechanism about a rolling layer. 
Eventually, if concentration were increased beyond the close-packed density, the 
system would reach the quasi-static limit. 

The particular run for C = 0.9, B = 0.001 (near the quasi-static limit) is presented 
in detail to illustrate the remarkable regularity and periodicity observed when 
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following the stress development over time. Stresses were found to oscillate with a 
frequency corresponding to the period of rolling of one particle over another (rolling 
cycle). A theoretical treatment of this problem seems feasible with the aid of 
information provided by this study. The analytical solution of this problem would be 
of great importance, because in that case the effect of material parameters and the 
effect of the number of particles would not have to  be sought by time-consuming sets 
of numerical experiments as in the present study. 

The sensitivity of observed behaviour a t  high concentrations to a slight 
perturbation of particle diameters in the uniform size distribution should be 
investigated. In this case perfectly regular structural patterns may not develop. 
Since mixing of particles of similar sizes a t  high concentrations is unlikely, the effect 
of initial conditions would probably be significant. The material behaviour could be 
only predicted in a mean sense, taking an average over many runs with different 
initial conditions. 

As discussed earlier, the efTect of sample size (the number of particles N )  is 
probably very important, especially a t  high concentrations (type B transitional 
regime), The sample-size effects may require different parametrization in cases of 
uniform shearing and local shearing (the rolling layer). Magnitudes of stresses and 
phenomenological constitutive equations would probably be affected. However, it is 
believed that the power-law trend discovered in the relationship between 
dimensionless stresses and an apparent shear rate (with powers descending from 2 
towards 0 as concentration increases) would still be valid. This result is considered 
to be the most important result of the study. 

Investigation of the sample size effects by repeating the analysis with a larger 
number of particles (for instance, 120 and 480) as well as the investigation of the 
effect of material parameters remains for future study. 

This study is supported by the US Army Cold Regions Research and Engineering 
Laboratory through Contract No. DACA89-87-K-0001. 

Appendix A. Derivation of the energy equation 
In  this Appendix the instantaneous mechanical-energy equation for the control 

volume (primary cell) is derived using a microscopic approach. The derivation 
yields expressions for translational and rotational kinetic energy, potential energy, 
rate of energy dissipation and the stress tensor in forms suitable for numerical 
evaluation. 

Newton’s equation for the translational motion of particle p is 
M V  

m-f, = c Fpq,, 
c= 1 

where x p  is the position vector of the centre of particle p ,  Fpq, is the total force 
exerted by particle qc on particle p a t  contact c,  M ,  is the number of contacts of 
particle p ,  and m is the mass of a particle. Multiplying equation (A 1)  by x p  and 
summing the resulting equations for all particles yields 

In  order to evaluate the term on the right-hand side, two types of contacts are 
considered (figure 23). If both particles which are involved in a contact are interior, 
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I 

Moving image cell I I 

I 

- - - -_ 
I 
I 
I 
I 
I 
I 
I 

Moving image cell 

FIGURE 23. Interior and boundary contacts in simple shear flow 

such as particles A and B, then the total contribution to the right-hand side of 
(A2)  due to this contact is 

FAB. X A  + FBA * = FAB X A , ,  (A 3) 

where RAE = x A  -1, is the relative velocity of particles A and B. If a contact is 
between an interior and exterior particle, such as particles P and Q', then because of 
periodic boundaries there is also a contact between particle Q (a clone of Q') and 
particle P (which is a clone of P) .  These two contacts are really identical, since the 
relative position and velocity of particles P and Q are exactly the same as those of 
P and Q. The total contribution to the right-hand side of (A 2) of these two identical 
boundary contacts is 

(A 4) FpQr * 1, + FQpr * RQ == FpQ, * ( X p - R Q )  = FpQ, * RpQ, + FpQ, * X Q f Q .  

Note that only the contact between P and Q' is actually within the cell. In  (A 4) RQ:Q 
= 1 - x Q  is the relative velocity of clone Q' with respect to its original Q .  This 
relative velocity is induced by the shear field, and can be expressed as 

9' 

RQfQ = D * ( x Q P - x ~ ) ,  (A 5 )  

where the Cartesian components of D are D,, = y ,  D,, = D,, = D,, = 0. Note that 
xQf  - xQ = x, - x,,, where x ,  and x,. are position vectors of contact points C (between 
P and Q') and C' (between Q and 2"). Using Fpw = FpSQ = - FQp, i t  therefore follows 
that 

FpQ, * X Q f Q  = FpQ, * [D * ( x ~ - x , , ) ]  = FpQ, * (0 x,) +FQp * (0 .  x~ , ) .  (A 6) 
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Using (A 3), (A 4) and (A 5 ) ,  equation (A 2) can be written as 

M .  Babic‘, H .  H .  Shen and H .  T. Shen 

N M~ M d N  
- z [ha;] = c c [Cqc * Rp3 = c [F, %I + c [F,, ’ (D . %)I. 
dt p-1 p=1 c-1 c-1 B 

(A 71 

In the first term on the right-hand side of (A 7) I$ and Xc are the force and relative 
velocity between particle p and the nearest image of particle q involved in contact 
c, respectively. Summations in this term include all contacts within a cell, counting 
each contact only once. In the second term on the right-hand side of (A 7) Fpq, and 
xc are force and position vectors of the contact point between interior particle p and 
exterior particle q‘ (image of q) .  The summation in this term goes over all boundary 
contacts, including both (identical) contacts such as c and c’. Using abbreviations 
E = Fpq and Rc = Rpq = X p  - Rq, RP = kP, and switching to standard indicia1 notation 
(A 7 )  can be written as 

M Mi3 

(A 8) 
d N  
- I: [+n*’pii’ap] = c [F;2;]+Dij  11 [F;,;], 
dt p-1  c- 1 c-1 

where M is the total number of contacts within a cell and MB is the total number of 
boundary contacts between one interior and one exterior particle. The above 
equation expresses the time rate of change of total translational kinetic energy in a 
cell. The next step is to separate kinetic energy due to mean shear flow and 
fluctuating motion of particles about the mean. The velocity of particle p can be 
separated into mean and fluctuating components as 

xf G uf = D, xf’ + u;”. (A 9) 

The rate of change of kinetic energy of particle p is then 

I d  
2 dt 
- - (u?u~)  = ~f U f  = ( U ~ ’ + D , X ~ ’ ) ( U ~ P + ~ ) ~ , U ~ )  = U ; ’ U ; P + D ~ , U ; P U ~ + D ~ ~ X ~ ’ : ~ ~ ~  

i d  
2 dt 

= -- (u;”u;”) +Di, ~ f ’  U p  +Di, U;”U;’ +DikDkl u ; ” x ~ .  (A 10) 

But, D,,D,, = 0 for simple shear flow. Hence, (A 8) becomes 

M M B  N I d  
-- c [ m ~ ; ~ u ; p ]  = z [F; t ; ]+Di5{z  [F;ac,C]- [ m ~ ; P ~ ; p + m q ~ f ] } .  (A 11) 
2 dt p-1 -1 c- 1 P-1 

This equation expresses the time rate of change of fluctuation translational energy 
(temperature). 

The rotational contribution to the energy equation is considered next. Newton’s 
equation for rotational motion of particle p is 

where 8, is the angular velocity of particle p ,  rCp is the position vector of contact 
point c with respect to the centre of particle p ,  and I is particle’s moment of inertia. 
Multiplying (A 12) by 8, and summing the resulting equations for all particles yields 
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The total contribution of a contact (i.e. between particles A and B)  to the right-hand 
side of the above equation is 

LrCA 4 B l z  e A  + ['CB FBAlz ' B  = LrCA &BIZ e A B ,  (A 14) 

where dAB = 8, + dB is the relative angular velocity of particles A and B. Therefore, 

d N  M 

- c [ge;] = c. [rc x El, e,, 
dt p-1 C-1 

(A 15) 

. .  
where rc = rep, E = Fpq,, 6, = ePq, = OP+Oq, .  

components : 
The total contact force I" at contact c consists of normal and tangential 

E =-(F",+Fzt),  (A 16) 

where k and t are unit vectors in normal and tangential directions, respectively. The 
relative velocity xc can be expressed in this coordinate system as 

Xc = lik + i t ,  

where n = xc - k and i = xc t .  Furthermore, re = Rk, and therefore [rc x El, = -RE, 
where R is particle's radius. Substituting these results into (A 11) and (A 15), one 
obtains 

(A 17) 

M M B  N d N  
- c [$u3] + c [F i  ri +Fs 81 = D,  { c [FI x;] - C [mu+;p + mxf' z i f ] }  , (A 18) 
dt,-1 C-1 c-1 P-1 

M 5 [4Ie;]+ FzR8, = 0. (A 19). 
P-1 C-1 

Adding (A 18) and (A 19), one obtains 

1 M N i d  
-- [mu: +lei] + [F: li +.F; 41 = D ,  [F: x;]- [mu;p U;P + mxy zip]  , 

P-1 

(A 20) 
2 dt p-1 c-1 {: 

where q = i + R e ,  is the relative tangential velocity at the contact. 
The above equation expresses the instantaneous energy balance in a cell. A more 

detailed form is obtained if the actual contact force model is specified. In this study, 
the viscoelastic force model described in $2 is used. In this model, the normal 
component of the contact force consists of spring and dashpot contributions : 

F, = K,n+C,n.  (A 21) 

The tangential component is given by: 

Fs = min ( IKs p + C, QI ; pK,, n)  sign (Q) . 
Hence, (A 20) becomes 



112 M .  BabiC, H .  H .  Shen and H .  T. Shen 

where M ,  is the number of non-sliding contacts and M ,  is the number of sliding 
contacts. 

The above equation can be written as 

where a physical interpretation of terms is as follows: T = kinetic energy per unit 
volume, Ti = potential energy per unit volume, r = rate of energy dissipation per 
unit volume, 7if = T ; + T ~ ,  = stress tensor. These terms are given by 

where A is area of the cell. 
It can be seen that the energy equation contains three major terms : rate of change 

of total energy, rate of energy dissipation and rate of work done by stress (stress 
power). The stress tensor consists of two terms, kinetic stress 75 and contact stress .I:,. All of these terms are explicitly expressed in forms suitable for numerical 
evaluation. However, a little bit more work is needed to reduce the contact stress 
tensor given by (A 29) into a more suitable form. Note that interior contacts can be 
trivially added to summation over boundary contacts in the first term of (A 29), since 
x,FipQc = -xcFQcp. C i  Using xt = x,P+r;P, the first term in (A 29) can be written as 

M B  N M~ N M~ N M~ 

c-1 p-1  c-1 p-1  c-1 p -1  c-1 
c [x; FT] = z 11 xt F3pQc = 2 r;PFjpQc + 2 zip c F T ~ C .  (A 30) 

Substituting this result back into (A 29), cancelling acceleration terms and noting 
that rtP = - r F Q c  and Ff’Qc = -Fj4cP, one finally obtains 

where Dkt = r;P - rfQ is the ‘branch vector ’ from the centre of particle p to the centre 
of particle q, and F; is contact force exerted from particle q on particle p a t  contact c .  

There is more merit in this derivation than merely obtaining the spatially averaged 
terms involved in the energy balance. The derivation yields a form of the contact 
stress tensor given by (A 31) that is identical to the expression derived by Cundall 



Granular shear flows of uniform deformable disks 113 

et al. (1982) but by using different arguments. However, they assumed that inertia 
forces are negligible throughout the derivation, having in mind application to quasi- 
static problems only. Several other researchers (Drecher & de Josselin de Jong 1972; 
Christofferson, Mehrabadi & Nemat Nasser 1981) have arrived a t  the same result 
using the principle of virtual work, but they all neglected inertia terms as well: 
Therefore, it was not apparent that equation (A 31) could be used for all situations, 
including dynamic (rapid flow) and quasi-static problems. This dilemma is now 
resolved, since it was shown that certain inertia-related terms do get cancelled and 
need not be neglected directly. One may think of this derivation as an application of 
the real work principle, instead of virtual. It should be noted that the same equation 
(A 31) was used by Walton & Braun (1985) in their simple shear flow simulation in 
the dynamic regime, but they have not presented any derivation. 

One final point is that the contact stress tensor given by (A 31) can be reduced to 
a collisional stress tensor obtained by the kinetic theory of rapid granular flows, 
assuming that contacts between particles are binary. This assumption is valid for low 
to moderately high concentrations and stiff particles (rigid-particle limit corresponds 
to K ,  + a). These arguments are presented in more details in Babid (1989). 

Appendix B. Summary of results 
This Appendix contains a summary of the simulation results in tabulated form. 

Tables 1-3 contain a summary of results for B = 0.001,O.Ol and 0.0707, respectively. 
All results in this table are cumulative time averages of instantaneous space- 
averaged quantities. An asterisk denotes a dimensionless quantity scaled by the 
factor given in the table below. The definition of terms in the tables is as follows: 

f 
4 
P, 

Quantity 

Stress tensor 
Transl. kinetic energy 
Rotat. kinetic energy 
Potential energy 
Total rate of ener. dissip. 
r due to normal damping 
r due to friction 
Mean angular velocity 
Coordination number 

Frequency of collisions 
Fabric tensor 
Fraction of slipping contacts 

Defined by equation 

(14)+(15) 
(10) 
(11) 
(12) 
t 13) 
1st term in (13) 
- 3rd term in (13) 

Scaled by 

P P Y 2  
P,D2Y2 
P, D2Y2 
P,D2Y2 
Ps D2Y3 
PSD2Y3 
PsD2Y3 
-3  
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C 
B = 0.001 
B = 0.01 
B = 0.0707 
7221 

a21 
C 
B = 0.001 
B = 0.01 
B = 0.0707 
n11 
a11 
C 
B = 0.001 
B = 0.01 
B = 0.0707 
1222 

a22 

0.775 
5.51 
4.07 
2.19 
0.214 
1.332 

0.775 
6.79 
5.69 
4.99 
0.072 
4.103 

0.775 
18.50 
14.16 
5.27 
0.290 
2.837 

0.800 
7.78 
4.58 
2.16 
0.299 
1.038 

0.800 
9.53 
6.27 
4.78 
0.163 
3.056 

0.800 
25.56 
16.16 
5.87 
0.341 
2.684 

0.825 
14.35 
4.24 
2.06 
0.458 
0.576 

0.825 
15.33 
5.87 
4.32 
0.301 
1.763 

0.825 
45.90 
13.41 
6.64 
0.456 
1.854 

0.850 
97.81 
13.85 
1.99 
0.913 
0.187 

0.850 
461.85 

18.16 
3.94 
1.127 
0.157 

0.850 
2172.10 

63.43 
7.66 
1.332 
0.189 

0.875 
198.36 
23.64 

1.78 
1.101 
0.112 

0.875 
2325.0 

44.09 
3.28 
1.547 
0.047 

0.875 
12 370 

159.00 
8.73 
1.709 
0.081 

0.900 
304.00 

8.95 
1.93 
1.198 
0.061 

0.900 
4501 .O 

56.64 
3.56 
1.684 
0.034 

0.900 
24 275 

236.84 
9.61 
1.845 
0.063 

TABLE 4. Fitting of results into a power law form 7f = a,(C)B-”dc). (a) 7 5 ,  (b) 7T1, ( G )  7&. 
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